Problem 16.4

Show that if we make the change of variables $\xi=x-c t$ and $\eta=x+c t$, then, as in (16.7),

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=-4 c^{2} \frac{\partial}{\partial \xi} \frac{\partial u}{\partial \eta} .
$$

Solution

The wave equation is given by equation (16.4) on page 684.

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{16.4}
\end{equation*}
$$

Write it in standard form.

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Comparing this equation with the general form of a second-order PDE,

$$
A \frac{\partial^{2} u}{\partial t^{2}}+B \frac{\partial^{2} u}{\partial t \partial x}+C \frac{\partial^{2} u}{\partial x^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial y}+F u=G,
$$

we see that $A=1, B=0, C=-c^{2}, D=0, E=0, F=0$, and $G=0$. The characteristic equations of this PDE are given by

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{1}{2 A}\left(B \pm \sqrt{B^{2}-4 A C}\right) \\
\frac{d x}{d t} & =\frac{1}{2}\left(0 \pm \sqrt{0-4(1)\left(-c^{2}\right)}\right) \\
\frac{d x}{d t} & =\frac{1}{2}(\pm 2 c) \\
\frac{d x}{d t} & =c \quad \text { or } \quad \frac{d x}{d t}=-c .
\end{aligned}
$$

Note that the discriminant, $B^{2}-4 A C=0-4(1)\left(-c^{2}\right)=4 c^{2}$, is greater than 0 , which means that the wave equation is hyperbolic. Therefore, there are two real and distinct families of characteristic curves in the $t x$-plane:

$$
x=c t+C_{1} \quad \text { or } \quad x=-c t+C_{2} .
$$

Solve for the constants of integration.

$$
\begin{aligned}
& C_{1}=x-c t \\
& C_{2}=x+c t
\end{aligned}
$$

Make the change of variables,

$$
\begin{aligned}
& \xi=x-c t \\
& \eta=x+c t,
\end{aligned}
$$

so that the wave equation takes the simplest form. Use the chain rule to write the derivatives in terms of these new variables.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial t}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial t}=\frac{\partial u}{\partial \xi}(-c)+\frac{\partial u}{\partial \eta}(c)=-c \frac{\partial u}{\partial \xi}+c \frac{\partial u}{\partial \eta} \\
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\left(\frac{\partial \xi}{\partial t} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial t} \frac{\partial}{\partial \eta}\right)\left(\frac{\partial u}{\partial t}\right)=\left(-c \frac{\partial}{\partial \xi}+c \frac{\partial}{\partial \eta}\right)\left(-c \frac{\partial u}{\partial \xi}+c \frac{\partial u}{\partial \eta}\right) \\
& =-c \frac{\partial}{\partial \xi}\left(-c \frac{\partial u}{\partial \xi}+c \frac{\partial u}{\partial \eta}\right)+c \frac{\partial}{\partial \eta}\left(-c \frac{\partial u}{\partial \xi}+c \frac{\partial u}{\partial \eta}\right)=c^{2} \frac{\partial^{2} u}{\partial \xi^{2}}-c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}-c^{2} \frac{\partial^{2} u}{\partial \eta \partial \xi}+c^{2} \frac{\partial^{2} u}{\partial \eta^{2}} \\
& =c^{2} \frac{\partial^{2} u}{\partial \xi^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}+c^{2} \frac{\partial^{2} u}{\partial \eta^{2}} \\
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x}=\frac{\partial u}{\partial \xi}(1)+\frac{\partial u}{\partial \eta}(1)=\frac{\partial u}{\partial \xi}+\frac{\partial u}{\partial \eta} \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\left(\frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial x} \frac{\partial}{\partial \eta}\right)\left(\frac{\partial u}{\partial x}\right)=\left(\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}\right)\left(\frac{\partial u}{\partial \xi}+\frac{\partial u}{\partial \eta}\right) \\
& =\frac{\partial}{\partial \xi}\left(\frac{\partial u}{\partial \xi}+\frac{\partial u}{\partial \eta}\right)+\frac{\partial}{\partial \eta}\left(\frac{\partial u}{\partial \xi}+\frac{\partial u}{\partial \eta}\right)=\frac{\partial^{2} u}{\partial \xi^{2}}+\frac{\partial^{2} u}{\partial \xi \partial \eta}+\frac{\partial^{2} u}{\partial \eta \partial \xi}+\frac{\partial^{2} u}{\partial \eta^{2}} \\
& =\frac{\partial^{2} u}{\partial \xi^{2}}+2 \frac{\partial^{2} u}{\partial \xi \partial \eta}+\frac{\partial^{2} u}{\partial \eta^{2}}
\end{aligned}
$$

As a result,

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}} & =\left(c^{2} \frac{\partial^{2} u}{\partial \xi^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}+c^{2} \frac{\partial^{2} u}{\partial \eta^{2}}\right)-c^{2}\left(\frac{\partial^{2} u}{\partial \xi^{2}}+2 \frac{\partial^{2} u}{\partial \xi \partial \eta}+\frac{\partial^{2} u}{\partial \eta^{2}}\right) \\
& =c^{2} \frac{\partial^{2} / u}{\partial \xi^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}+c^{2} \frac{\partial^{2} u}{\partial \eta^{2}}-c^{2} \frac{\partial^{2} / u}{\partial \xi^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta}-c^{2} \frac{\partial^{2} u}{\partial \eta^{2}} \\
& =-4 c^{2} \frac{\partial^{2} u}{\partial \xi \partial \eta} \\
& =-4 c^{2} \frac{\partial}{\partial \xi} \frac{\partial u}{\partial \eta},
\end{aligned}
$$

and the wave equation becomes

$$
-4 c^{2} \frac{\partial}{\partial \xi} \frac{\partial u}{\partial \eta}=0 .
$$

Divide both sides by $-4 c^{2}$.

$$
\frac{\partial}{\partial \xi} \frac{\partial u}{\partial \eta}=0
$$

Integrate both sides partially with respect to ξ.

$$
\frac{\partial u}{\partial \eta}=g(\eta)
$$

Integrate both sides partially with respect to η.

$$
u(\xi, \eta)=\int g(\eta) d \eta+F(\xi)
$$

The integral of an arbitrary function is another arbitrary function.

$$
u(\xi, \eta)=G(\eta)+F(\xi)
$$

Now that the general solution for u is known, change back to the original variables.

$$
u(x, t)=G(x+c t)+F(x-c t)
$$

